Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
PLoS One ; 19(2): e0295928, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394153

RESUMO

The fall armyworm (Spodoptera frugiperda) is one of the most destructive pests of corn. New infestations have been reported in the East Hemisphere, reaching India, China, Malaysia, and Australia, causing severe destruction to corn and other crops. In Puerto Rico, practical resistance to different mode of action compounds has been reported in cornfields. In this study, we characterized the inheritance of resistance to chlorantraniliprole and flubendiamide and identified the possible cross-resistance to cyantraniliprole and cyclaniliprole. The Puerto Rican (PR) strain showed high levels of resistance to flubendiamide (RR50 = 2,762-fold) and chlorantraniliprole (RR50 = 96-fold). The inheritance of resistance showed an autosomal inheritance for chlorantraniliprole and an X-linked inheritance for flubendiamide. The trend of the dominance of resistance demonstrated an incompletely recessive trait for H1 (♂ SUS × â™€ PR) × and an incompletely dominant trait for H2 (♀ SUS × â™‚ PR) × for flubendiamide and chlorantraniliprole. The PR strain showed no significant presence of detoxification enzymes (using synergists: PBO, DEF, DEM, and VER) to chlorantraniliprole; however, for flubendiamide the SR = 2.7 (DEM), SR = 3.2 (DEF) and SR = 7.6 (VER) indicated the role of esterases, glutathione S- transferases and ABC transporters in the metabolism of flubendiamide. The PR strain showed high and low cross-resistance to cyantraniliprole (74-fold) and cyclaniliprole (11-fold), respectively. Incomplete recessiveness might lead to the survival of heterozygous individuals when the decay of diamide residue occurs in plant tissues. These results highlight the importance of adopting diverse pest management strategies, including insecticide rotating to manage FAW populations in Puerto Rico and other continents.


Assuntos
Fluorocarbonos , Inseticidas , Mariposas , Ftalimidas , Pirazóis , Sulfonas , ortoaminobenzoatos , Humanos , Animais , Spodoptera/genética , Diamida/farmacologia , Porto Rico , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva
2.
PeerJ ; 12: e16729, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38223756

RESUMO

The agrochemical industry has launched several new synthetic auxin herbicides in rice to combat increasing numbers of herbicide resistant weeds to other modes of action. Excessive or inappropriate use of these herbicides has resulted in unintended consequences near the sites of application, such as herbicide drift. This study was conducted to determine the impact of drift of quinclorac and florpyrauxifen-benzyl+penoxsulam (FBP) on the yield and yield components of two sunflower cultivars. In a growth chamber experiment, quinclorac and FBP were applied to 2-4 true leaf stages at rates ranging from 2.93 to 93.75 and from 0.51 to 16.25 g ai ha-1, respectively. Nonlinear regression analyses indicated that the cultivar Bosfora was more sensitive to quinclorac and FBP than the cultivar Tunca. In field experiments, these sunflower cultivars were treated with drift rates of quinclorac (<375 g ai ha-1) and FBP (<65 g ai ha-1) when they were at the 8-10 true leaf stage. Quinclorac and FBP drift rates resulted in up to 52-61% and 85-100% injury and 82-88% and 100% yield loss, respectively. Crop injury and yield data clearly showed that cultivar Bosfora was more sensitive to FBP and quinclorac rates than cultivar Tunca, and both cultivars were more sensitive to FBP than quinclorac. In our work, we also found that plant height reduction caused by quinclorac at early growth stages may be a valuable indicator to evaluate crop injury and yield loss.


Assuntos
Asteraceae , Helianthus , Herbicidas , Ácidos Indolacéticos , Herbicidas/análise , Folhas de Planta/química
3.
Plant Direct ; 8(1): e560, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38268857

RESUMO

Auxin-mimic herbicides chemically mimic the phytohormone indole-3-acetic-acid (IAA). Within the auxin-mimic herbicide class, the herbicide fluroxypyr has been extensively used to control kochia (Bassia scoparia). A 2014 field survey for herbicide resistance in kochia populations across Colorado identified a putative fluroxypyr-resistant (Flur-R) population that was assessed for response to fluroxypyr and dicamba (auxin-mimics), atrazine (photosystem II inhibitor), glyphosate (EPSPS inhibitor), and chlorsulfuron (acetolactate synthase inhibitor). This population was resistant to fluroxypyr and chlorsulfuron but sensitive to glyphosate, atrazine, and dicamba. Subsequent dose-response studies determined that Flur-R was 40 times more resistant to fluroxypyr than a susceptible population (J01-S) collected from the same field survey (LD50 720 and 20 g ae ha-1, respectively). Auxin-responsive gene expression increased following fluroxypyr treatment in Flur-R, J01-S, and in a dicamba-resistant, fluroxypyr-susceptible line 9,425 in an RNA-sequencing experiment. In Flur-R, several transcripts with molecular functions for conjugation and transport were constitutively higher expressed, such as glutathione S-transferases (GSTs), UDP-glucosyl transferase (GT), and ATP binding cassette transporters (ABC transporters). After analyzing metabolic profiles over time, both Flur-R and J01-S rapidly converted [14C]-fluroxypyr ester, the herbicide formulation applied to plants, to [14C]-fluroxypyr acid, the biologically active form of the herbicide, and three unknown metabolites. The formation and flux of these metabolites were faster in Flur-R than J01-S, reducing the concentration of phytotoxic fluroxypyr acid. One unique metabolite was present in Flur-R that was not present in the J01-S metabolic profile. Gene sequence variant analysis specifically for auxin receptor and signaling proteins revealed the absence of non-synonymous mutations affecting auxin signaling and binding in candidate auxin target site genes, further supporting our hypothesis that non-target site metabolic degradation is contributing to fluroxypyr resistance in Flur-R.

4.
Front Chem ; 11: 1249968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780984

RESUMO

Introduction: Dilutely doped ferroelectric materials are of interest, as engineering these materials by introducing point defects via doping often leads to unique behavior not otherwise achievable in the undoped material. For example, B-site doping with transition metals in barium titanate (BaTiO3, or BTO) creates defect dipoles via oxygen vacancies leading enhanced polarization, strain, and the ability to tune dielectric properties. Though defect dipoles should lead to dielectric property enhancements, the effect of grain size in polycrystalline ferroelectrics such as BTO plays a significant role in those properties as well. Methods: Herein, doped BTO with 1.0% copper (Cu), iron (Fe), or cobalt (Co) was synthesized using traditional solid-state processing to observe the contribution of both defect-dipole formation and grain size on the ferroelectric and dielectric properties. Results and discussion: 1.0% Cu doped BTO showed the highest polarization and strain (9.3 µC/cm2 and 0.1%, respectively) of the three doped BTO samples. While some results, such as the aforementioned electrical properties of the 1.0% Cu doped BTO can be explained by the strong chemical driving force of the Cu atoms to form defect dipoles with oxygen vacancies and copper's consistent +2 valency leading to stable defect-dipole formation (versus the readily mixed valency states of Fe and Co at +2/+3), other properties cannot. For instance, all three Tc values should fall below that of undoped BTO (typically 120°C-135°C), but the Tc of 1.0% Cu BTO actually exceeds that range (139.4°C). Data presented on the average grain size and distribution of grain sizes provides insight allowing us to decouple the effect of defect dipoles and the effect of grain size on properties such as Tc, where the 1.0% Cu BTO was shown to possess the largest overall grains, leading to its increase in Tc. Conclusion/future work: Overall, the 1% Cu BTO possessed the highest polarization, strain, and Tc and is a promising dopant for engineering the performance of the material. This work emphasizes the challenge of extricating one effect (such as defect-dipole formation) from another (grain size modification) inherent to doping polycrystalline BTO.

5.
Nat Commun ; 14(1): 4865, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567866

RESUMO

Genomic structural variation (SV) has profound effects on organismal evolution; often serving as a source of novel genetic variation. Gene copy number variation (CNV), one type of SV, has repeatedly been associated with adaptive evolution in eukaryotes, especially with environmental stress. Resistance to the widely used herbicide, glyphosate, has evolved through target-site CNV in many weedy plant species, including the economically important grass, Eleusine indica (goosegrass); however, the origin and mechanism of these CNVs remain elusive in many weed species due to limited genetic and genomic resources. To study this CNV in goosegrass, we present high-quality reference genomes for glyphosate-susceptible and -resistant goosegrass lines and fine-assembles of the duplication of glyphosate's target site gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). We reveal a unique rearrangement of EPSPS involving chromosome subtelomeres. This discovery adds to the limited knowledge of the importance of subtelomeres as genetic variation generators and provides another unique example for herbicide resistance evolution.


Assuntos
Eleusine , Eleusine/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Variações do Número de Cópias de DNA/genética , Fosfatos
7.
BMC Genomics ; 24(1): 350, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365554

RESUMO

BACKGROUND: Poa annua (annual bluegrass) is an allotetraploid turfgrass, an agronomically significant weed, and one of the most widely dispersed plant species on earth. Here, we report the chromosome-scale genome assemblies of P. annua's diploid progenitors, P. infirma and P. supina, and use multi-omic analyses spanning all three species to better understand P. annua's evolutionary novelty. RESULTS: We find that the diploids diverged from their common ancestor 5.5 - 6.3 million years ago and hybridized to form P. annua ≤ 50,000 years ago. The diploid genomes are similar in chromosome structure and most notably distinguished by the divergent evolutionary histories of their transposable elements, leading to a 1.7 × difference in genome size. In allotetraploid P. annua, we find biased movement of retrotransposons from the larger (A) subgenome to the smaller (B) subgenome. We show that P. annua's B subgenome is preferentially accumulating genes and that its genes are more highly expressed. Whole-genome resequencing of several additional P. annua accessions revealed large-scale chromosomal rearrangements characterized by extensive TE-downsizing and evidence to support the Genome Balance Hypothesis. CONCLUSIONS: The divergent evolutions of the diploid progenitors played a central role in conferring onto P. annua its remarkable phenotypic plasticity. We find that plant genes (guided by selection and drift) and transposable elements (mostly guided by host immunity) each respond to polyploidy in unique ways and that P. annua uses whole-genome duplication to purge highly parasitized heterochromatic sequences. The findings and genomic resources presented here will enable the development of homoeolog-specific markers for accelerated weed science and turfgrass breeding.


Assuntos
Poa , Poa/genética , Elementos de DNA Transponíveis , Melhoramento Vegetal , Genes de Plantas , Poliploidia , Genoma de Planta , Evolução Molecular
8.
Res Sq ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36865158

RESUMO

Genomic structural variation (SV) can have profound effects on an organism’s evolution, often serving as a novel source of genetic variation. Gene copy number variation (CNV), a specific form of SV, has repeatedly been associated with adaptive evolution in eukaryotes, especially to biotic and abiotic stresses. Resistance to the most widely used herbicide, glyphosate, has evolved through target-site CNV in many weedy plant species, including the economically important cosmopolitan grass, Eleusine indica (goosegrass); however, the origin and mechanisms of these resistance CNVs remain elusive in many weed species due to limited genetic and genomics resources. In order to study the target site CNV in goosegrass, we generated high-quality reference genomes for both glyphosate-susceptible and -resistant individuals, fine assembled the duplication of glyphosate's target site gene enolpyruvylshikimate-3-phosphate synthase (EPSPS), and revealed a novel rearrangement of EPSPS into the subtelomeric region of the chromosomes, ultimately leading to herbicide resistance evolution. This discovery adds to the limited knowledge of the importance of subtelomeres as rearrangement hotspots and novel variation generators as well as provides an example of yet another unique pathway for the formation of CNVs in plants.

9.
Methods Mol Biol ; 2638: 173-189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781642

RESUMO

KASP is commonly used to genotype bi-allelic SNPs and In/Dels, and the standard protocol works well when both alleles are nearly equally prevalent in the DNA template. To detect rare alleles in bulked samples or to distinguish more than three genotypes, such as tri-allelic loci or mutations across orthologous genes in polyploids, adjustments to the protocol and/or data analysis are required. In this chapter, we present modified protocols for these non-traditional applications, including reaction conditions that enhance the fluorophore signal from rare alleles, resulting in increased KASP assay sensitivity. We also describe alternative KASP data analysis approaches that increase statistical certainty of genotyping calls. Furthermore, this increased assay sensitivity enables high-throughput genotyping using KASP, as samples can be pooled and tested in a single reaction. For example, rare alleles can be detected in mixed seed pools when present in ratios as low as 1 in 200. The assay modifications presented here expand the options available for complex genotyping, and retain KASP's advantages of being cheap, fast, and accurate.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Poliploidia , Humanos , Genótipo , Alelos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único
10.
Clin Proteomics ; 19(1): 50, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36572854

RESUMO

BACKGROUND: Despite the high morbidity and mortality associated with sepsis, the relationship between the plasma proteome and clinical outcome is poorly understood. In this study, we used targeted plasma proteomics to identify novel biomarkers of sepsis in critically ill patients. METHODS: Blood was obtained from 15 critically ill patients with suspected/confirmed sepsis (Sepsis-3.0 criteria) on intensive care unit (ICU) Day-1 and Day-3, as well as age- and sex-matched 15 healthy control subjects. A total of 1161 plasma proteins were measured with proximal extension assays. Promising sepsis biomarkers were narrowed with machine learning and then correlated with relevant clinical and laboratory variables. RESULTS: The median age for critically ill sepsis patients was 56 (IQR 51-61) years. The median MODS and SOFA values were 7 (IQR 5.0-8.0) and 7 (IQR 5.0-9.0) on ICU Day-1, and 4 (IQR 3.5-7.0) and 6 (IQR 3.5-7.0) on ICU Day-3, respectively. Targeted proteomics, together with feature selection, identified the leading proteins that distinguished sepsis patients from healthy control subjects with ≥ 90% classification accuracy; 25 proteins on ICU Day-1 and 26 proteins on ICU Day-3 (6 proteins overlapped both ICU days; PRTN3, UPAR, GDF8, NTRK3, WFDC2 and CXCL13). Only 7 of the leading proteins changed significantly between ICU Day-1 and Day-3 (IL10, CCL23, TGFα1, ST2, VSIG4, CNTN5, and ITGAV; P < 0.01). Significant correlations were observed between a variety of patient clinical/laboratory variables and the expression of 15 proteins on ICU Day-1 and 14 proteins on ICU Day-3 (P < 0.05). CONCLUSIONS: Targeted proteomics with feature selection identified proteins altered in critically ill sepsis patients relative to healthy control subjects. Correlations between protein expression and clinical/laboratory variables were identified, each providing pathophysiological insight. Our exploratory data provide a rationale for further hypothesis-driven sepsis research.

11.
Mol Med ; 28(1): 122, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217108

RESUMO

BACKGROUND: Long-COVID is characterized by prolonged, diffuse symptoms months after acute COVID-19. Accurate diagnosis and targeted therapies for Long-COVID are lacking. We investigated vascular transformation biomarkers in Long-COVID patients. METHODS: A case-control study utilizing Long-COVID patients, one to six months (median 98.5 days) post-infection, with multiplex immunoassay measurement of sixteen blood biomarkers of vascular transformation, including ANG-1, P-SEL, MMP-1, VE-Cad, Syn-1, Endoglin, PECAM-1, VEGF-A, ICAM-1, VLA-4, E-SEL, thrombomodulin, VEGF-R2, VEGF-R3, VCAM-1 and VEGF-D. RESULTS: Fourteen vasculature transformation blood biomarkers were significantly elevated in Long-COVID outpatients, versus acutely ill COVID-19 inpatients and healthy controls subjects (P < 0.05). A unique two biomarker profile consisting of ANG-1/P-SEL was developed with machine learning, providing a classification accuracy for Long-COVID status of 96%. Individually, ANG-1 and P-SEL had excellent sensitivity and specificity for Long-COVID status (AUC = 1.00, P < 0.0001; validated in a secondary cohort). Specific to Long-COVID, ANG-1 levels were associated with female sex and a lack of disease interventions at follow-up (P < 0.05). CONCLUSIONS: Long-COVID patients suffer prolonged, diffuse symptoms and poorer health. Vascular transformation blood biomarkers were significantly elevated in Long-COVID, with angiogenesis markers (ANG-1/P-SEL) providing classification accuracy of 96%. Vascular transformation blood biomarkers hold potential for diagnostics, and modulators of angiogenesis may have therapeutic efficacy.


Assuntos
Biomarcadores , COVID-19 , Biomarcadores/sangue , COVID-19/complicações , Estudos de Casos e Controles , Endoglina , Feminino , Humanos , Integrina alfa4beta1 , Molécula 1 de Adesão Intercelular , Metaloproteinase 1 da Matriz , Neovascularização Patológica , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Trombomodulina , Molécula 1 de Adesão de Célula Vascular , Fator A de Crescimento do Endotélio Vascular , Fator D de Crescimento do Endotélio Vascular , Síndrome Pós-COVID-19 Aguda
13.
Front Med (Lausanne) ; 9: 898592, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35872762

RESUMO

The endothelial glycocalyx is a gel-like layer on the luminal side of blood vessels that is composed of glycosaminoglycans and the proteins that tether them to the plasma membrane. Interest in its properties and function has grown, particularly in the last decade, as its importance to endothelial barrier function has come to light. Endothelial glycocalyx studies have revealed that many critical illnesses result in its degradation or removal, contributing to endothelial dysfunction and barrier break-down. Loss of the endothelial glycocalyx facilitates the direct access of immune cells and deleterious agents (e.g., proteases and reactive oxygen species) to the endothelium, that can then further endothelial cell injury and dysfunction leading to complications such as edema, and thrombosis. Here, we briefly describe the endothelial glycocalyx and the primary components thought to be directly responsible for its degradation. We review recent literature relevant to glycocalyx damage in several critical illnesses (sepsis, COVID-19, trauma and diabetes) that share inflammation as a common denominator with actions by several common agents (hyaluronidases, proteases, reactive oxygen species, etc.). Finally, we briefly cover strategies and therapies that show promise in protecting or helping to rebuild the endothelial glycocalyx such as steroids, protease inhibitors, anticoagulants and resuscitation strategies.

14.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217601

RESUMO

The natural auxin indole-3-acetic acid (IAA) is a key regulator of many aspects of plant growth and development. Synthetic auxin herbicides such as 2,4-D mimic the effects of IAA by inducing strong auxinic-signaling responses in plants. To determine the mechanism of 2,4-D resistance in a Sisymbrium orientale (Indian hedge mustard) weed population, we performed a transcriptome analysis of 2,4-D-resistant (R) and -susceptible (S) genotypes that revealed an in-frame 27-nucleotide deletion removing nine amino acids in the degron tail (DT) of the auxin coreceptor Aux/IAA2 (SoIAA2). The deletion allele cosegregated with 2,4-D resistance in recombinant inbred lines. Further, this deletion was also detected in several 2,4-D-resistant field populations of this species. Arabidopsis transgenic lines expressing the SoIAA2 mutant allele were resistant to 2,4-D and dicamba. The IAA2-DT deletion reduced binding to TIR1 in vitro with both natural and synthetic auxins, causing reduced association and increased dissociation rates. This mechanism of synthetic auxin herbicide resistance assigns an in planta function to the DT region of this Aux/IAA coreceptor for its role in synthetic auxin binding kinetics and reveals a potential biotechnological approach to produce synthetic auxin-resistant crops using gene-editing.


Assuntos
Ácido 2,4-Diclorofenoxiacético , Brassicaceae/genética , Resistência a Herbicidas/genética , Inseticidas , Proteínas de Plantas/genética , Receptores de Superfície Celular/genética , Deleção de Sequência , Brassicaceae/metabolismo , Dicamba , Simulação de Acoplamento Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ligação Proteica , Conformação Proteica , RNA de Plantas/genética , Receptores de Superfície Celular/metabolismo , Análise de Sequência de RNA/métodos
15.
Environ Sci Technol ; 56(1): 325-334, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34920670

RESUMO

Safeners are used extensively in commercial herbicide formulations. Although safeners are regulated as inert ingredients, some of their transformation products have enhanced biological activity. Here, to fill gaps in our understanding of safener environmental fate, we determined rate constants and transformation products associated with the acid- and base-mediated hydrolysis of dichloroacetamide safeners AD-67, benoxacor, dichlormid, and furilazole. Second-order rate constants for acid- (HCl) and base-mediated (NaOH) dichloroacetamide hydrolysis (2.8 × 10-3 to 0.46 and 0.3-500 M-1 h-1, respectively) were, in many cases (5 of 8), greater than those reported for their chloroacetamide herbicide co-formulants. In particular, the rate constant for base-mediated hydrolysis of benoxacor was 2 orders of magnitude greater than that of its active ingredient co-formulant, S-metolachlor. At circumneutral pH, only benoxacor underwent appreciable hydrolysis (5.3 × 10-4 h-1), and under high-pH conditions representative of lime-soda softening, benoxacor's half-life was 13 h─a timescale consistent with partial transformation during water treatment. Based on Orbitrap LC-MS/MS analysis of dichloroacetamide hydrolysis product mixtures, we propose structures for major products and three distinct mechanistic pathways that depend on the system pH and compound structure. These include base-mediated amide cleavage, acid-mediated amide cleavage, and acid-mediated oxazolidine ring opening. Collectively, this work will help to identify systems in which hydrolysis contributes to the transformation of dichloroacetamides, while also highlighting important differences in the reactivity of dichloroacetamides and their active chloroacetamide co-formulants.


Assuntos
Herbicidas , Acetamidas , Cromatografia Líquida , Herbicidas/química , Hidrólise , Espectrometria de Massas em Tandem
16.
Pest Manag Sci ; 78(3): 1206-1212, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34837476

RESUMO

BACKGROUND: Trifluralin is widely used in Australia as one of the important pre-emergence herbicides to control annual ryegrass (Lolium rigidum Gaud.) populations. Trifluralin resistance evolution and mechanisms have been identified in some ryegrass populations. RESULTS: In this study, 21 putative resistant field survey populations from Western Australian were screened with trifluralin, and 90% (19 of 21) contained individuals surviving 480 g ha-1 trifluralin treatment. Twelve populations contained individuals possessing the known α-tubulin resistance mutations at Val-202, Thr-239 and Arg-243 in TUA4 (alpha-tubulin 4 n), plus multiple potential resistance mutations in TUA4 pending genetic confirmation. Three populations had only individuals carrying newly identified (but uncharacterized) mutations in TUA3/TUA4. Radioactive work found that six populations evolved metabolic resistance to trifluralin, and at least four of them also possessed the known and/or putative target-site mutations. CONCLUSION: These results confirm that a high incidence of resistance to the dinitroaniline herbicide (trifluralin) is present, and target-site tubulin mutations make a major contribution to resistance in these annual ryegrass populations. Co-evolution of both target-site and non-target-site resistance to per-emergence herbicides warrants diverse management tactics.


Assuntos
Herbicidas , Lolium , Austrália , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Humanos , Lolium/genética , Trifluralina , Austrália Ocidental
17.
Pest Manag Sci ; 78(2): 499-505, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34553491

RESUMO

BACKGROUND: Turfgrass managers reported poor Eleusine indica control following applications of the mitosis-inhibiting herbicide dithiopyr in cool-season turfgrass. Field, glasshouse, and laboratory experiments were conducted to understand the response of these biotypes to dithiopyr and prodiamine. RESULTS: In field experiments at two locations with putative dithiopyr-resistant E. indica, preemergence applications of dithiopyr provided no E. indica control. Single applications of the protoporphyrinogen oxidase (PPO)-inhibitor, oxadiazon, provided > 85% control at these locations. When subjected to agar-based bioassays, root growth of putative resistant biotypes planted with 0.01 mmol L-1 dithiopyr was slightly reduced (< 25%) whereas roots were completely inhibited in the susceptible biotype. Glasshouse whole plant rate-response experiments found that the cytochrome P450 inhibitor, piperonyl butoxide (PBO), did not increase the sensitivity of these putative resistant biotypes to dithiopyr. Sequencing of α-tubulin 1 (TUA1) revealed a Leu-136-Phe substitution in both dithiopyr-resistant populations. CONCLUSION: Eleusine indica biotypes with resistance to dithiopyr are present in cool-season turfgrass systems in the United States. Resistance is possibly related to a single nucleotide polymorphism (SNP) of an α-tubulin gene. If turfgrass managers suspect resistance to dithiopyr, oxadiazon can still be an effective alternative for preemergence control. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Eleusine , Herbicidas , Eleusine/genética , Resistência a Herbicidas , Herbicidas/farmacologia , Piridinas , Estações do Ano
18.
Mater Horiz ; 8(5): 1528-1537, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846461

RESUMO

Functional and structural ceramics have become irreplaceable in countless high-tech applications. However, their inherent brittleness tremendously limits the application range and, despite extensive research efforts, particularly short cracks are hard to combat. While local plasticity carried by mobile dislocations allows desirable toughness in metals, high bond strength is widely believed to hinder dislocation-based toughening of ceramics. Here, we demonstrate the possibility to induce and engineer a dislocation microstructure in ceramics that improves the crack tip toughness even though such toughening does not occur naturally after conventional processing. With modern microscopy and simulation techniques, we reveal key ingredients for successful engineering of dislocation-based toughness at ambient temperature. For many ceramics a dislocation-based plastic zone is not impossible due to some intrinsic property (e.g. bond strength) but limited by an engineerable quantity, i.e. the dislocation density. The impact of dislocation density is demonstrated in a surface near region and suggested to be transferrable to bulk ceramics. Unexpected potential in improving mechanical performance of ceramics could be realized with novel synthesis strategies.

19.
Environ Sci Technol ; 55(21): 14658-14666, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34637294

RESUMO

There is growing interest in the fate and effects of transformation products generated from emerging pollutant classes, and new tools that help predict the products most likely to form will aid in risk assessment. Here, using a family of structurally related steroids (enones, dienones, and trienones), we evaluate the use of density functional theory to help predict products from reaction with chlorine, a common chemical disinfectant. For steroidal dienones (e.g., dienogest) and trienones (e.g., 17ß-trenbolone), computational data support that reactions proceed through spontaneous C4 chlorination to yield 4-chloro derivatives for trienones and, after further reaction, 9,10-epoxide structures for dienones. For testosterone, a simple steroidal enone, in silico predictions suggest that C4 chlorination is still most likely, but slow at environmentally relevant conditions. Predictions were then assessed through laboratory chlorination reactions (0.5-5 mg Cl2/L) with product characterization via HRMS and NMR, which confirmed near exclusive 4-chloro and 9,10-epoxide products for most trienones and all dienones, respectively. Also consistent with computational expectations, testosterone was effectively unreactive at these same chlorine levels, although products consistent with in silico predictions were observed at higher concentrations (in excess of 500 mg Cl2/L). Although slight deviations from in silico predictions were observed for steroids with electron-rich substituents (e.g., C17 allyl-substituted altrenogest), this work highlights the potential for computational approaches to improve our understanding of transformation products generated from emerging pollutant classes.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Cloro , Halogenação , Poluentes Químicos da Água/análise
20.
Mol Ecol ; 30(21): 5343-5359, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34614274

RESUMO

Genomic-based epidemiology can provide insight into the origins and spread of herbicide resistance mechanisms in weeds. We used kochia (Bassia scoparia) populations resistant to the herbicide glyphosate from across western North America to test the alternative hypotheses that (i) a single EPSPS gene duplication event occurred initially in the Central Great Plains and then subsequently spread to all other geographical areas now exhibiting glyphosate-resistant kochia populations or that (ii) gene duplication occurred multiple times in independent events in a case of parallel evolution. We used qPCR markers previously developed for measuring the structure of the EPSPS tandem duplication to investigate whether all glyphosate-resistant individuals had the same EPSPS repeat structure. We also investigated population structure using simple sequence repeat markers to determine the relatedness of kochia populations from across the Central Great Plains, Northern Plains and the Pacific Northwest. We found that the original EPSPS duplication genotype was predominant in the Central Great Plains where glyphosate resistance was first reported. We identified two additional EPSPS duplication genotypes, one having geographical associations with the Northern Plains and the other with the Pacific Northwest. The EPSPS duplication genotype from the Pacific Northwest seems likely to represent a second, independent evolutionary origin of a resistance allele. We found evidence of gene flow across populations and a general lack of population structure. The results support at least two independent evolutionary origins of glyphosate resistance in kochia, followed by substantial and mostly geographically localized gene flow to spread the resistance alleles into diverse genetic backgrounds.


Assuntos
Bassia scoparia , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Fluxo Gênico , Genômica , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...